Your Position:   Home > Technologies > Technologies of all products > Metal Powder Compression >

Metal Powder Compression(Metal Powder Compaction)

Metal powder compaction is the process of compacting metal powder in a die through the application of high pressures. Typically the tools are held in the vertical orientation with the punch tool forming the bottom of the cavity. The powder is then compacted into a shape and then ejected from the die cavity. In a number of these applications the parts may require very little additional work for their intended use; making for very cost efficient manufacturing.

The PM process and sinter process generally consists of three basic steps: powder blending (pulverisation), die compaction, and sintering. Compaction is generally performed at room temperature, and the elevated-temperature process of sintering is usually conducted at atmospheric pressure and under carefully controlled atmosphere composition. Optional secondary processing such as coining or heat treatment often follows to obtain special properties or enhanced precision. 

One of the older such methods, and still one used to make around 1Mt/yr of structural components of iron-based alloys, is the process of blending fine (<180 microns) metal (normally iron) powders with additives such as a lubricant wax, carbon, copper, and/or nickel, pressing them into a die of the desired shape, and then heating the compressed material ("green part") in a controlled atmosphere to bond the material by sintering. This produces precise parts, normally very close to the die dimensions, but with 5-15% porosity, and thus sub-wrought steel properties.There are several other PM processes which have been developed over the last fifty years

The density of the compacted powder increases with the amount of pressure applied. Typical pressures range from 80 psi to 1000 psi (0.5 MPa to 7 MPa), pressures from 1000 psi to 1,000,000 psi have been obtained. Pressure of 10 tons/in² to 50 tons/in² (150 MPa to 700 MPa) are commonly used for metal powder compaction. To attain the same compression ratio across a component with more than one level or height, it is necessary to work with multiple lower punches. A cylindrical workpiece is made by single-level tooling. A more complex shape can be made by the common multiple-level tooling.Production rates of 15 to 30 parts per minute are common.

There are four major classes of tool styles: single-action compaction, used for thin, flat components; opposed double-action with two punch motions, which accommodates thicker components; double-action with floating die; and double action withdrawal die. Double action classes give much better density distribution than single action. Tooling must be designed so that it will withstand the extreme pressure without deforming or bending. Tools must be made from materials that are polished and wear-resistant.

Click here to leave a message

Fill in your information